74 research outputs found

    Estimation of Output Channel Noise for Continuous Variable Quantum Key Distribution

    Full text link
    Estimation of channel parameters is important for extending the range and increasing the key rate of continuous variable quantum key distribution protocols. We propose a new estimator for the channel noise parameter based on the method of moments. The method of moments finds an estimator from the moments of the output distribution of the protocol. This estimator has the advantage of being able to use all of the states shared between Alice and Bob. Other estimators are limited to a smaller publicly revealed subset of the states. The proposed estimator has a lower variance for high loss channel than what has previously been proposed. We show that the method of moments estimator increases the key rate by up to an order of magnitude at the maximum transmission of the protocol.Comment: 5 pages, 3 figure

    Security of Continuous Variable Quantum Cryptography

    Get PDF
    We discuss a quantum key distribution scheme in which small phase and amplitude modulations of CW light beams carry the key information. The presence of EPR type correlations provides the quantum protection. We identify universal constraints on the level of shared information between the intended receiver (Bob) and any eavesdropper (Eve) and use this to make a general evaluation of security. We identify teleportation as an optimum eavesdropping technique.Comment: 6 figure

    Quantum Cloning of Continuous Variable Entangled States

    Get PDF
    We consider the quantum cloning of continuous variable entangled states. This is achieved by introducing two symmetric entanglement cloning machines (or e-cloners): a local e-cloner and a global e-cloner; where we look at the preservation of entanglement in the clones under the condition that the fidelity of the clones is maximized. These cloning machines are implemented using simple linear optical elements such as beam splitters and homodyne detection along with squeeze gates. We show that the global e-cloner out-performs the local e-cloner both in terms of the fidelity of the cloned states as well as the strength of the entanglement of the clones. There is a minimum strength of entanglement (3dB for the inseparability criterion and 5.7dB for the EPR paradox criterion) of the input state of the global e-cloner that is required to preserve the entanglement in the clones.Comment: 11 pages, 6 figure

    Gaussian Post-selection for Continuous Variable Quantum Cryptography

    Get PDF
    We extend the security proof for continuous variable quantum key distribution protocols using post selection to account for arbitrary eavesdropping attacks by employing the concept of an equivalent protocol where the post-selection is implemented as a series of quantum operations including a virtual distillation. We introduce a particular `Gaussian' post selection and demonstrate that the security can be calculated using only experimentally accessible quantities. Finally we explicitly evaluate the performance for the case of a noisy Gaussian channel in the limit of unbounded key length and find improvements over all pre-existing continuous variable protocols in realistic regimes.Comment: 4+4 pages. arXiv admin note: substantial text overlap with arXiv:1106.082

    Conditional quantum-state engineering using ancillary squeezed-vacuum states

    Full text link
    We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n≤4n\leq4, and conjecture that this can be generalized for an arbitrary nn Fock state. We describe our experimental demonstration of this scheme using coherent input states and measuring experimental fidelities that are only achievable using quantum resources.Comment: 10 pages, 14 figures, use pdf version, high quality figures available on reques

    Measuring photon anti-bunching from continuous variable sideband squeezing

    Get PDF
    We present a technique for measuring the second-order coherence function g(2)(τ)g^{(2)}(\tau) of light using a Hanbury-Brown Twiss intensity interferometer modified for homodyne detection. The experiment was performed entirely in the continuous variable regime at the sideband frequency of a bright carrier field. We used the setup to characterize g(2)(τ)g^{(2)}(\tau) for thermal and coherent states, and investigated its immunity to optical loss. We measured g(2)(τ)g^{(2)}(\tau) of a displaced squeezed state, and found a best anti-bunching statistic of g(2)(0)=0.11±0.18g^{(2)}(0) = 0.11 \pm 0.18.Comment: 4 pages, 4 figure

    Quantum State Engineering with Continuous-Variable Post-Selection

    Get PDF
    We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photon and superposition of coherent states, from input single and two photon Fock states respectively. The input Fock state is interacted with an ancilla squeezed vacuum state using a beam-splitter. We transform the quantum system by post-selecting on the continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the principles of this scheme using displaced coherent states and measure experimentally fidelities that are only achievable using quantum resources.Comment: 4 pages, 5 figures, publishe

    Measurement-Based Noiseless Linear Amplification for Quantum Communication

    Full text link
    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require advanced experimental techniques such as noiseless amplification. Recently it was shown that the benefits of noiseless amplification could be extracted by performing a post-selective filtering of the measurement record to improve the performance of quantum key distribution. We apply this protocol to entanglement degraded by transmission loss of up to the equivalent of 100km of optical fibre. We measure an effective entangled resource stronger than that achievable by even a maximally entangled resource passively transmitted through the same channel. We also provide a proof-of-principle demonstration of secret key extraction from an otherwise insecure regime. The measurement-based noiseless linear amplifier offers two advantages over its physical counterpart: ease of implementation and near optimal probability of success. It should provide an effective and versatile tool for a broad class of entanglement-based quantum communication protocols.Comment: 7+3 pages, 5+1 figures, close to published versio
    • …
    corecore